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This  paper  reviews  the  explanations  recently 
developed  by  the  authors  and  their  collaborators 
of  how disorder  leads to exponential  band tails 
and  to  Urbach tails in optical absorption. It starts 
with  the  simplest  single-potential-well  models 
which, despite  their  simplicity,  are  remarkably 
successful in accounting  for  the  experimental 
facts. It then identifies the  weaknesses,  hidden 
or explicit, in these  models  and  shows,  step  by 
step,  how  they  can  be  corrected  by  increasing 
the  sophistication of the  procedures  used.  Exact 
results  are  finally  achieved  through  use of field- 
theoretic  techniques,  and  appropriately 
formulated  single-potential-well  models  are 
shown to reproduce  these  quite  accurately. It is 
also  shown  that  the  probability  distribution of the 
random  potential  must be close to Gaussian, 
with an autocorrelation  function  which  cuts off 
fairly  rapidly  with  distance  for  there to be a  well- 
defined,  broad  energy  range in which  there  are 
exponential  band tails in the  density of states 
and  Urbach tails in the  optical  absorption. 
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1. Introduction 

A historical  perspective 
It is convenient to begin setting the problem of band  and 
Urbach tails into historical perspective with Sommerfeld’s 
free-electron theory  of  metals [I] .  While that theory resolved 
through the  introduction of quantum mechanics  such 
paradoxes as  the specific heat of metals,  it revealed another 
difficulty. The  mean free path of electrons  in  metals  could 
not be understood  as  arising from scattering off each ion 
core. Bloch’s solution to  the mean-free-path  problem lay in 
recognizing that  the electrons diffracted rather  than scattered 
in the perfectly periodic structure of the ideal crystal [2]. The 
Bloch-Floquet theorem  he proved  implied that electrons 
have quantum states  in perfect crystals with energies which 
fall into allowed bands with sharp edges, separated by gaps. 
Wilson exploited this  advance  in developing his two-band 
model of semiconductors, a filled valence band separated 
by a band  gap  from  the  empty next higher band,  the 
conduction  band [3]. The  main consequences of these  ideas 
were worked out  in  the thirties, but substantial progress in 
semiconductor physics and technology did  not  take place 
until the  immediate postwar  period of the  late forties and 
early fifties. As a consequence  of extensive studies  of doped 
and  compensated semiconductors, it was realized during  that 
period that  the  introduction of disorder  caused  tails to 
appear  at  band edges in  the density of states. The earliest 
theories, semiclassical in nature, appeared in  the sixties 

M .  H.  COHEN  ET AL IBM J.  RES. DEVELOP. VOL. 32 NO, I JANUARY 1988 



[4,5]. Finally, in a systematic and thorough study, Urbach 
documented the existence  of exponential tails in the optical 
absorption of ionic crystals in 1953 [6]. 

Since Urbach, such exponential tails  have  been found in a 
wide  range of materials, both in the optical absorption and 
in the density of states of individual bands. There have  been 
many attempts to explain the existence  of exponential tails. 
The best one can say of this literature is that it  is confused, 
with a conflicting  welter of contentions and interpretations. 
We show in this paper that the underlying physics is 
extremely simple, that the elements of an exact theory were 
already contained in the early  work  of Halperin and Lax [7], 
and that much of the confusion in the literature arose from a 
failure to appreciate the  important effects  of correlation in 
the random potential on the energy  range over which 
exponential behavior occurs. This paper is in fact a review  of 
the explanations developed by the  authors  and their 
collaborators in a recent series  of papers [8-141 concerning 
the way in  which disorder leads to exponential band tails 
and to Urbach tails; it puts that work in perspective. 

Some facfs about band tails 
Before  discussing the experimental facts,  it is necessary to 
recognize that two differing kinds of  processes are studied 
experimentally. The first, or fast,  processes  involve induced 
transitions in  which the transition time is much less than  the 
relaxation times for both the electronic and atomic 
structures which remain, unrelaxed, in their initial 
configurations. Examples of such processes are optical 
absorption and transient photocurrents. The second, or slow, 
processes involve measurements taken on time scales  such 
that  the electronic and atomic structures are fully  relaxed. 
These processes are much more difficult to understand, for 
reasons to be discussed later in this article, and we shall 
focus primarily on fast  processes. 

Ionic crystals, other insulators, crystalline semiconductors, 
and amorphous semiconductors all  show exponential tails in 
the energy dependence of the optical absorption 

CY = a,exp(-,) hw - E, 

below a continuum of the expected  type  for transitions 
between extended states in the valence and conduction 
bands. In ( I ) ,  hw is the photon energy, E, is the width  of the 
exponential tail, E,  is the energy  of the Urbach focus, to be 
explained below, and a, is a prefactor weakly dependent on 
experimental conditions. The width E, appears to have 
additive contributions from thermal origin, ETH, and 
structural origin, EST, 

E, = ETH + EST. (2) 

The temperature dependence of ETH is linear above the 
Debye temperature 8, then dropping rapidly at 8 and passing 
over to power  law variation at low temperatures, clearly 

(1) 
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implicating phonons. EST increases  with structural disorder, 
implying that ETH arises from the instantaneous thermal 
disorder introduced by phonons which appear frozen in fast 
processes.  If that part of the optical absorption due to 
extended-state transitions is extrapolated with the aid  of a 
suitable theory, it appears to vanish at a threshold energy ET, 
as  discussed by Tauc [ 151. Cody [ 161 has shown that 
there is a remarkable correlation among ET, E,, and EF for 
a-Si:H, 

E, = cE, -+ EF.  (3) 

It is clear that  the Urbach tail originates from disorder, but 
how?  Does the exponential energy dependence of CY arise 
from the combined density of states, from the matrix 
elements, from the densities of states of the individual bands, 
or from some combination of  these? 

The universality of the Urbach tail obviates explanations 
specific to particular materials, as, e.g., that of  Dow and 
Redfield [ 171, which is particular to ionic crystals. Other 
experimental studies which obtain information from fast 
processes involving a single band, in fact, suggest that the 
element of  universality is  the existence of exponential tails in 
the densities of states of the conduction and valence bands 
individually. For example, Monroe and Kastner have  shown 
[ 181 via transient photocurrent measurements that the 
valence band of  glassy  As,Se, has an exponential tail 
extending over five orders of magnitude in the density of 
states and 0.6 eV in energy, a significant fraction of the band 
gap. One can also argue plausibly that the one-electron 
Hamiltonians of  typical materials contain many matrix 
elements, that the structural disorder, static and dynamic, 
has many components, and that these components affect 
different matrix elements differently. This leads to statistical 
independence of the states in the conduction and valence 
bands. The latter in turn implies that the dipole matrix 
element in the optical absorption is an energy-independent 
constant and that the Urbach tails are indeed due to 
exponential tails on the individual bands [IO]. Indeed, there 
is much evidence that in amorphous semiconductors the 
valence and conduction bands individually have exponential 
tails  in the density of states. In the following, therefore, we 
concentrate on understanding how exponential tails occur 
on individual bands. 

Summary 
We  begin in Section 2 with a demonstration that the band 
tail  is  very  sensitive to the probability distribution of the 
random potential, and argue that the appropriate probability 
distribution is Gaussian [9, IO]. In  Section 3 we  review the 
results  of our detailed study of  six  very simple models,  all 
based on supposing that  the band tails arise from localized 
states generated by potential fluctuations in the form  of 
isolated potential wells  of predetermined shape [ 131. These 
calculations yield exponential band tails and optical 
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absorption  in  agreement with experiment  and expose clearly 
the underlying physics, but  the  assumptions  in  the model are 
untested. In Section 4, the  arbitrary choice of well size made 
in  Section 3 is corrected with what will turn  out  to be 
remarkably accurate results [ 1 I]. In Section 5 ,  the  treatment 
of the tail as disjoint from  the  continuum is cured via an 
application of the  coherent potential approximator (CPA), 
which leads to  an  understanding of the  Urbach focus and of 
Equation (3) [9], but  the Halperin-Lax regime [7] is lost. In 
Section 6, the Halperin-Lax regime is regained via a 
treatment based on  path integrals which embraces all 
regimes in the tail as well as the  continuum.  In Section  7, 
the single-well assumption is shown to be asymptotically 
exact and  the most  probable well shape is found  as  an 
instanton in a classical field theory [ 141. The exact results of 
the  instanton theory were largely contained  in  the early work 
of Halperin and Lax [7], but failure of the earlier  workers to 
appreciate the  importance of  correlation in  the  random 
potential was responsible for much of the confusion which 
appears  in  the literature. Some  comments  are  made  in 
Section 8 on  the extent  of our knowledge concerning the 
influence of lattice dynamics  on  the electron band tail. The 
non-adiabaticity of the  electron-phonon  interaction is treated 
using the  Feynman path-integral method.  In  the adiabatic 
limit, the essential physics may again be recaptured by 
means of simple potential-well arguments, provided the 
electron oscillation frequency  is large compared  to  the 
oscillation frequency  of the well itself. Finally, we discuss 
some unresolved  complications  arising from electron-hole 
interactions important  in optical processes. The  main 
conclusions of our work are  summarized  in Section 9. 

It should be emphasized once again that we are reviewing 
here  primarily our  own  contributions  to  the subject, with the 
work of others discussed only to  the extent necessary to set 
our own  work into proper perspective. Moreover, our 
various contributions  as well as  those  of others  are presented 
in a logical order,  in which the ordering element is  increasing 
sophistication,  completeness and accuracy, rather  than  in 
historical order. Thus, simple potential-well model 
calculations [ 131 are presented in Section 3, whereas  a more 
sophisticated and  accurate potential-well calculation [ 1 I] is 
presented in Section 4, even though  it was done earlier, 
because the  arbitrary choice  of well size characteristic  of the 
simplest model  calculations [ 13, I91 is relaxed in Section 4. 
Similarly, the earliest calculation which clearly and 
unobjectionably displayed the exponential tail was the  CPA 
calculation by Abe and Toyozawa [20], but the discussion  of 
the CPA is deferred to Section 5, after the potential-well 
models  are discussed. 

2. The importance of the probability  distribution 
There  are two  particularly  simple  models of an electron 
moving in a random potential  for which exact results are 

84 available. The first is the Lloyd model [2 11, a  simple, single- 
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band, tight-binding model in which the single-site energies 
are independent  random variables having  identical 
Lorentzian  probability distributions of half-width r about 
vanishing average value. The density  of  states N (   E )  is 

N ( E )  = s dE‘N,(E‘) - 

where N,(E) is the density  in the periodic case (r = 0). One 
sees that disorder introduces tails into  the density of states at 
the  band edges and  that  the tail width is r. However, the 
tails are clearly not exponential. 

The second  model is that of an electron  moving in a 
continuous  random potential V( r ) ,  which has a correlation 
function 

( ~ ( r ) ~ ( r ’ ) )  = w*C(r - r ’ ) .  ( 5 )  

In ( 9 ,  w’ is the variance of V ( r )  at a point (( V ( r ) )  = 0). If 
C( R )  is a smooth, monotonically  decreasing  function of R,  
one  can define a  characteristic length L through 

1 r 
T (E’ - E)’ + r’’ (4) 

d’RC(R) = - L’. 
4a 
3 (6)  

If L is much greater than  the deBroglie wavelength for the 
electron energies of interest, the  motion of the electrons in 
V( r )  can be treated semiclassically [4, 5 1. The density of 
states is then 

N ( E )  = sE dVN, ( E  - V ) P ( V ) ,  (7) 

where N, is the semiclassical, i.e., free-electron, density of 
states and P( V )  is the probability distribution of the  random 
potential. 

One learns  from  these  two  examples that  the  band tails 
introduced by disorder can be very sensitive to  the details of 
the probability distribution of the associated random 
potential. It is therefore essential for  what follows to have an 
accurate  representation  of P( V ) .  

as frozen in  their instantaneous positions, displaced by 
phonons  from their equilibrium positions. These 
displacements, u, introduce  into  the  Hamiltonian governing 
the electron motion a random potential V which, in general, 
is linear  in u. This V has  a  multivariate  Gaussian  probability 
distribution because u does. That is, the  random potential 
associated with thermal disorder  has  a Gaussian probability 
distribution. 

In structurally  disordered  materials  such as  amorphous 
semiconductors, the  structural disorder  has many 
components.  In covalently  bonded  materials, for example, 
there  can be bond-length, bond-angle, and dihedral-angle 
variation; coordination defects; odd rings randomly 
dispersed in a  matrix of even rings, etc. [22]. Each of these 
random  elements influences in  turn  many matrix  elements. 
Thus, loosely speaking, one  can imagine  something  like  a 

-m 

Now in fast processes, the  atoms  appear  to  the electrons 
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central  limit theorem holding so that P( V )  can be accurately 
represented once again by a multivariate Gaussian, this time 
because of the  intrinsic complexity of the physical situation. 

Finally, even  when P( V )  is decidedly non-Gaussian, as 
for a binary alloy, there  are regions in the probability  space 
of  substantial physical importance within which it is well 
approximated  as a multivariate Gaussian.  Thus,  in  the 
following, we shall  confine  ourselves to  Gaussian  random 
potentials. As we shall  shortly see, only Gaussian random 
potentials produce exponential tails. 

3. Simple  potential-well  models for band  tails 
It was understood  correctly from  the beginning of the subject 
that  band tails were associated with localized states split off 
the  top of the valence band by locally repulsive potential 
fluctuations or off the  bottom of the  conduction  band by 
locally attractive  potential  fluctuations. The mystery has 
been why the tails are exponential  (Urbach). We start  our 
considerations by reviewing an  examination of the behavior 
of localized states split off by specific simple, idealized 
potential  fluctuations [ 131. 

Six cases were studied  in  Reference [ 131: 

I .  Free electron continuum with an imposed  square well of 

2. The same, but with a well of Gaussian  shape. 
3. A simple  tight-binding model with a semicircular  density 

of  states and single-site energies which are  independent 
random variables. 

depth t and radius u (of atomic size). 

4. The same, but with a simple  cubic  density of states. 
5. The  conduction  band of a-Si:H via an  accurate tight- 

binding model previously developed  for the optical and 
transport properties [23,24]. 

6. The  same for the valence band [23,24]. 

All cases show the  same qualitative  dependence  of the 
binding energy I E I of the first bound state on well depth t, 

sketched in Figure 1. There  are  three distinct regions: a 
threshold region, an  intermediate region, and  an asymptotic 
region. If one translates the  parameters of  each  model into 
quantities  appropriate  to  the  actual experimental  situations, 
one sees that  the threshold region is very narrow on  the 
experimental scale, the  intermediate region is on  the 
experimental scale, and  the asymptotic region is impossible 
to reach  except for very narrow bands separated by very 
wide gaps. 

where 

[ E l  = A : + B ;  E , <  IEl < E , .  (8) 

Let us  now  suppose,  according to  the considerations of 
Section 2, that t has a Gaussian distribution with variance 
w ,  
p(c )  a y c 2 / 2 ~ , *  

Let us therefore concentrate  on  the  intermediate region, 

2 

(9) 

- IE 
t 

I I 
I I 

Table 1 Parameters  relating  binding to well  depth  (after [ 131). 

Case m+ A E, E2  Energy unit 
_ _ _ ~ ~  ~~~ ~~ 

1 Yes 0.023 0.5 6 h2/2m*a2 
2 Yes 0.010 0.3 6 h2/2m+a2 
3 No 0.064 0.2 3 V 
4 No 0.065 0.2 3 V 
5 No 0.007 0.1 0.3 eV 
6 No 0.003 0.1 0.3 eV 

Insertion of (8) into (9) immediately yields exponential band 
tails, 

N ( E )  a e"E"E~, (10) 

E, = 2Aw2, ( I  1) 

in a very simple and direct way. Moreover, the calculated 
values of A together with estimates of w yield values of E, in 
good quantitative agreement with experiment,  as discussed 
below. The  extent X of the  bound state is comparable  to u in 

The detailed results of [ 131 are given in Table 1. The first 
(E , ,  E,). 

column of the table lists the cases studied, numbered as 
above in  the text. The second column states  whether an 
effective mass approximation was used. The  third  column 85 

IBM J.  RES. DEVELOP. VOL. 32 NO. I JANUARY 1988 M. H. COHEN ET AL. 



86 

In, 

Y 
I 
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I 
I 
I 
I 
I 
I 
I 
I 

i Schematic of energy (E)  dependence of the density of states N ( E ) ,  
:: showing the four different regions and the energy dependence of In 
,, N ( E )  up to an  additive  constant in each.  The  continuum and the 

Gaussian  regions  are  contracted  and  the  Halperin-Lax  region 
4 expanded relative to the Urbach region. 

lists A ,  which is  dimensionless  when t is expressed in  the 
units listed in the final column. A ,  E,,  and E2 are defined in 
(8), and E,  and E,, given in the  fourth  and fifth columns, 
respectively, are also expressed in the units  of the last 
column. In that  column  Vis  the nearest-neighbor  electron 
transfer  matrix element of the simple  tight-binding models. 

dependent  on  making  an effective mass  approximation; (2) 
the form is universal, but  the  parameters  are  not; (3) 
exponential and  Urbach tails follow from this universal form 
for the binding energy (8) only for  Gaussian  potentials; (4) 
N(E)  can drop by  five orders  of magnitude within (E, ,   E2);  
( 5 )  there is quantitative agreement with experiment for 
specific materials [ 131; ( 6 )  the range ( E l ,  E,) is reduced  in 
a-Si:H by the presence of a nearby  interacting band. 

Let us turn now to  the  other two regions. The threshold 
region begins at cC, the critical value o f t  needed to  bind  one 
state.  Inserting the dependence I E I (t  - tc)' near C, into 
(9) gives 

One sees that (1 )  the validity of the results is not 

Apart from  numerical details, the result ( 12), ( 13) was first 

obtained by Halperin and Lax [7], and we call the region 
within which it  holds the Halperin-Lax regime, and  the 
corresponding part of the density of states the Halperin-Lax 
tail. Here, X a (t - tc)" and is much larger than a. 

In the  deep tail, IE I - 6 - 4t, so that (9) yields 
N( E )  a e-[( I E 1+4fc)/E$ (14) 

E: = (15) 

This  asymptotic behavior  is not reached  until t exceeds IO2& 
where t is the energy unit  in  Table 1 .  In Cases 5 and 6, it is 
never reached because of the presence of the  other  band.  We 
call this regime the Gaussian regime because of (14), but in 
fact the  central limit theorem  may  not hold in  the  deep tail, 
so that N( E )  may reflect the  actual  asymptotic  form of P( V) 
there. In  the  deep tail, X << a holds. 

These results are  summarized  in Figure 2, where the 
three regions are clearly displayed. It  should be pointed out 
that Halperin and Lax obtained all three regions, but  did  not 
recognize the  intermediate region as an exponential tail 
because (E ,  - E,)/t happened  to be particularly  small in  the 
case they  studied. Plugging numbers  into  the detailed results 
of [ 131, one sees that  the Halperin-Lax region is too narrow 
to see, the Gaussian region is too  deep  to see, but  the  Urbach 
region is observable. 

Reference [ I31 contains  comparisons with experiment for 
thermal disorder  from  acoustic and optical phonons, a 
comment  on ionic crystals, and excellent values for E, for 
the  conduction  and valence bands of a-Si:H and of the 
valence band of As2Se,. One most significant result is that E, 
a w2, Equation (1 1). Since for  a  Gaussian  probability 
distribution the various contributions  to  the disorder 
contribute  to w' by adding  in  the square, one immediately 
obtains  Equation (2). 

4. Correcting  the  arbitrary  choice of a 
The simple physical models discussed in  the preceding 
section give clear physical insight into  and a  good 
quantitative  account of the  Urbach tail. Nevertheless, they 
contain five questionable features: 

1. Are the wells really isolated? 
2. a is chosen  arbitrarily. 
3. The well shape is chosen  arbitrarily. 
4. The tail is  treated as disjoint from  the  continuum. 
5 .  Correlation in  the  random potential was not considered 

explicitly. 

In this  section we summarize  the results of an equally  simple 
earlier investigation which eliminates  questionable point 2 
above [ 1 I]. 

Model 2 of the last section was studied, but with the 
generalization that  the width a of the well was allowed to be 
a free variable. The best value of a was fixed by a  variational 
argument separately  for  each energy. Point 5 was dealt  with 
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by explicitly using  a  correlated  Gaussian random potential. 
The results were identical to those  of [ 131 qualitatively, but 
there were significant improvements. In particular, the 
results were exact in  the Gaussian and Urbach regions but 
were 3% off the exact value of E; in  the Halperin-Lax 
region. How we know  what the exact  answers are is 
discussed in  Section 7. To be off by 3%  in  an essentially 
unobservable regime and  to be exact elsewhere is a 
considerable  achievement  for  a  simple potential-well 
calculation. 

In analogy with the discussion of Section 3, we consider  a 
probability distribution for the  Fourier  components V ( k )  of 
the  random potential which takes the form 

PI V k ) )  Ot exP[-S( VI13 ( 16a) 

where 

The choice  of  autocorrelation function B(k)  = ( V(k)V(-k))  
is in fact crucial  for the occurrence  of  a broad range of  linear 
exponential  behavior  in the  band tail. For convenience, we 
take 

~ ( k )  = V ~ , ( * L ' ) ~ ' * ~ X P ( - ~ ~ L ~ / ~ ) ,  (17) 

where we have introduced a correlation  length L describing 
the spatial extent of  short-range order  in  the solid, typically 
of the  order of the  interatomic spacing. By working  in 
general dimension d, we can illustrate the role of 
dimensionality  in  pinching the Halperin-Lax region into  an 
unobservably  small energy window  near the  continuum 
edge. The probability of occurrence  of  a  potential  fluctuation 
of the form 

V ( X )  = - Voexp(-x2/a2) (18) 

of variable depth Vo and range a is then given by (16), with 

The  dominant  contribution  to  the density of states (DOS) 
in the tail at  an energy - 1 E I arises from  the most  probable 
of the fluctuations of the  form ( 1  8), with the  additional 
constraint  that  the potential well ( 18) possess a ground state 
at  the energy - I E I . Accordingly, we minimize (19) with 
respect to Vo and subject to  this constraint. Two limiting 
cases are worth  noting. In the very shallow tail the scale of 
the localized state  and  the range a are large compared  to L. 
It follows that  the  quantity  in  square brackets in ( 1  9) may  be 
approximated by unity  and S a Via". The  constraint  on Vo 
and a to produce  a bound  state  at energy - I E I takes the 
form I E I + l/a2 = Vo. For d < 4, the  approximate S has 
a local minimum when the  ratio of the range  of the 
potential  fluctuation to  the electron deBroglie wavelength 
X = h / m  is given by (a/X)' = (4 - d)/d.  Since this 

Urbach (-14.4~) 

1 2 3 4 5 

y = l m L  

1 Exponential  part  of  density of states as a function of y = kbr, 
P exhibiting  the  Gaussian  tail (y >> 2), the  Urbach  tail (0.1 < y < 2) 

and  the  Halperin-Lax  tail (0 < y < 0. I ; see  inset).  The  nature of the 
most  probable  potential  fluctuation  and  wavefunction in each  regime 

6 is illustrated  schematically. 

ratio  vanishes as d "-f 4 for any fixed E, it  is  evident that  the 
influence  of the correlation  length L is felt even for relatively 
shallow band tail states in high dimensions. In particular, the 
Halperin-Lax region for d = 3 is pinched into a  narrow 
energy window near  the  continuum edge. In  the very deep 
tail the binding energy - I E 1 = - Vo. Substituting into ( I  9) 
and minimizing with respect to a gives a = L and 
Smin = I E I 2/2  VL,,  the well-known semiclassical result. If no 
approximation for S is made  and  the exact constraint 
between Vo and a for d = 3 is used, the result illustrated in 
Figure 3 is obtained. The energy scale t L  = h2/(2mL2) is 
typically -0.5 eV, so that essentially the  entire 
experimentally observable band tail lies in  the crossover 
regime between the  Gaussian tail, which is  unobservable due 
to  the presence of the valence band,  and  the Halperin-Lax 
region, which occurs  over  a  range 

87 
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The accurately  linear  exponential tail over the energy 
interval 0.1 < I E I /e, < 2 easily spans five decades in  the 
DOS, and we associate  this with the experimentally observed 
Urbach tail. As we show in Section 7 ,  the restriction  of 
potential  fluctuations ( 18) to Gaussian form  does  not 
substantially affect the  numerical accuracy  of  these results. 
In fact,  it allows us to recapture to a high degree of accuracy 
the essential physics of the  more formal  path-integral and 
replica methods discussed in Sections  6 and 7 .  

5. Curing  the  disjuncture  from  the  continuum: 
The CPA 
Here we consider the results of the  coherent potential 
approximation (CPA). The DOS can  be expressed in terms 
of the single-particle Green's function 

N ( E )  = --tr  ImG(E-), (20) 1 
iT 

G(E-) = Lim 
1 

6-0+ E - is - H' 

The  Hamiltonian is supposed to have a regular, Le., periodic, 
part H, and a random  part V. Taking  the  trace in (20) is 
tantamount  to taking an average over the  random potential 
V, or 

N ( E )  = --tr  Im(G(E-))v, 

provided P( V )  satisfies certain  nonrestrictive  conditions. The 
effect of averaging over V can be represented  as replacing V 
in H in  (21) with a  complex  energy-independent self-energy, 

I 
(22) 

?r 

In  the CPA x(E-) is calculated by treating  scattering of local 
potential  fluctuations exactly but independently  of all other 
potential  fluctuations, which are treated  in  a mean field 
approximation  through their  replacement by x itself. 

The CPA is easiest to  implement for  simple  tight-binding 
models  in which the single-site energies are treated  as 
independent  random variables. Thus,  the  only  improvement 
afforded by the  CPA over the simple potential-well 
calculations  of  Sections  3 and 4  is the capability  of  treating 
the tail and  the  continuum  on  the  same footing by using a 
single method,  and, as we shall see, some things are lost. 

The CPA was first applied to  this problem by Abe and 
Toyozawa  [20], who showed that  it yields Urbach tails for 
Gaussian random single-site energies. Their work was 
amplified considerably  in [9]. We can  summarize  the results 
of the CPA as follows: 

1. The Halperin-Lax region is lost because of the single-site 

2. In the  Urbach  and Gaussian regions, the relationship 
feature  of the CPA. 

between t and E becomes 88 
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- = -G(E). 
1 

(24) 
t 

Thus,  the t dependence of I E I in the simple  models is 
seen to derive from  the energy dependence of G, that is, 
from fundamental  band properties. 
Urbach  tails  occur  only  for  Gaussian  probability 
distributions P( V ) .  
The  quantitative results for the  Urbach  and Gaussian 
regions are  the  same  as before. 
The  Urbach focus  corresponds to  the  bottom of the 
unperturbed  band shifted to ( V )  ,,, the virtual crystal 
approximation.  This works well for crystalline materials, 
and for a-Si:H the theory gives 2.0  eV  for EF [23,24], 
whereas experiment gives 2. I eV [ 161. 
Finally, Equation (3) is obtained, with a value of c in 
agreement with that  found by Cody [23,24]. 

6. Finding  the  Halperin-Lax regime again; path 
integrals 
The CPA  catches the  continuum,  the  Urbach,  and  the 
Gaussian regions, but it misses the Halperin-Lax regime, the 
well shape is not general, a is restricted, and  the Gaussian 
potential is uncorrelated. The question  of isolated potential 
wells is not addressed.  Feynman's-path  integral  formalism 
does catch all of the regimes. It keeps all of the advances 
made by the CPA, and, in addition, a is not restricted. 
However, the well shape is not general [ 141, and isolation is 
again not addressed. 

Sa-yakanit and collaborators, especially Glyde,  have 
developed the application  of  Feynman's methods  to  the 
problem  of an electron  moving in a random potential in 
considerable  detail [25-281. Their procedure can be 
summarized  as follows. The Green's function for 
propagation from a point x, at  time t ,  to a point x2 at  time t, 
is represented by a  path integral: 

A = S' 'dlL,  
'I 

The integration in ( 2 5 )  is over all paths x(t) for which 

The Action A and  the Lagrangian L are those of a  particle  of 
effective mass m* moving  in  a continuum  through a random 
potential V. 

G is thus represented by a  functional integral. However, 
the only  functional  integrals which can  be evaluated are 
Gaussian; i.e., the action must be quadratic  in  the position x 
and  the velocity v = %. Feynman showed in his  polaron 
theory how to replace a more complex A with a  Gaussian A 
via a  variational  principle  [27, 291. In  the present  problem, 
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than  the path-integral  theory  in the tail, but it  lacks the 
smooth transition to  the  continuum of the latter. One very 
important feature of the path-integral  theory  for the tail is 
that  the results come  out  in analytic form. As this  form is 
much easier to derive  from the field theory of the next 
section, we postpone discussion of it  until  then. 

I 
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however, one  can prove that a  corresponding  variational 
principle  holds only  in  the  deep tail. In the  other energy 
regions, one blindly uses the Lloyd and Best variational 
principle [30] and hopes  for the best. 

Carrying out this  program as was done by Sa-yakanit and 
Glyde, one gets results equivalent to  the  jointure of the  CPA 
and  the potential-well theories. The results are exact  in the 
Gaussian and  Urbach regions, the  continuum is excellent, 
and  the Halperin-Lax regime is present but with a value of 
E& which is about 10% off the exact value. Thus,  the simple 
potential-well theory of Section 4 is somewhat more  accurate 

7. Introducing  asymptotically exact arguments, 
field theory, and instantons 
An alternative  functional-integral  representation  of the 
averaged Green’s function is given by classical field theory: 

- 1/8 W’ SJ dxd~’&~(x)C(x - x’)&*(x’). (30) 

The right-hand  side  of (29) is a functional integral over the 
n-component vector field $(x) in the limit n + 0. &“)(x) is  a 
single component of the full vector $(x). The action S[$] 
contains a  scalar and not  a Hermitian  product of $ with 
(E* - H,)$ as  indicated by the  dot.  The  random potential 
has been assumed to have a  Gaussian  multivariate 
distribution with correlation function given by (5). 

Gaussian  functional integrals. Therefore, one evaluates (29) 
approximately by a  saddle-point  integration about a field $, 
for which 

Just as  in the path-integral case, one  can  do  only 

For energies in  the  continuum,  the only  solution of (31) is at 
$ = 0. However, in  the tail, as pointed out  and worked out 
by Cardy [3 I], there  are  additional solutions  of (3 1 )  for 
nonzero $,, the  instantons of field theory. 

The explicit form of (3 I )  is 

- 1/zw’S dx’C(x - x’)$~(x’)$,,(x) = 0. (32) 

Cardy  confined himself to white-noise potentials  for which 
C(x - x’) is a  delta  function. As a consequence,  he was able 

to find only the Halperin-Lax region. John  and Stephen 
found  the  deep tail by introducing a finite correlation  length 
into C(x - x’) [32]. However, it is possible to solve (32) for 
all energies in  the tail [ 141. The essential point is that (32) 
has the  same  structure as the  Hartree  equation, so that all 
the advanced numerical  techniques of  electronic structure 
theory are available  for  its  solution. 

After the saddle-point  integration  is camed  out,  one 
obtains 

N( E )  = No( E)e-’[’O’, (33) 

with the  dominant energy dependence coming  from  the 
second factor. If, instead of inserting the  true solution  of (32) 
for Go into S, one inserts  a 6, of  Gaussian form  and 
minimizes S with respect to  the  amplitude  and width  of the 
Gaussian, one  obtains  the path-integral results of Sa-yakanit 
and Glyde [25-281 identically [ 141. The resulting  analytic 
form  for the density  of  states is given explicitly in Section 3 
of Reference [ 141. There is a close analogy between the  true 
instanton  and  the most  probable  potential. Thus, by solving 
the  instanton  equation of motion (32) exactly, one allows for 
the most general well shape possible. 

theoretical  literature on  band tails. One sees it, e.g., in  the 
work of  Halperin and Lax [7], of Zittartz  and Langer [33], 
and in  various  papers by Lifshitz and collaborators [34]. The 
use of field theory greatly simplifies its  derivation, allows for 
the effect of spatial  correlation  in the  random potential, 
simplifies to  some  extent  the derivation and calculation  of 
the prefactor N,(E) of Equation (33), and,  perhaps  most 
important, provides  a basis for  showing that  the single- 
potential well approximation becomes  asymptotically exact 
when S[&) >> 1. This last proceeds by carrying out formally 
a cumulant expansion  for N ( E )  around $, [ 141, and S[$,] 
becomes >> 1 already in  the Halperin-Lax region. Thus,  the 
field-theoretic results for the tail are exact starting with the 
Halperin-Lax region in  the tail and going  deeper. Exact 
values E,, E& and E: are  to be found  in Reference [ 141 for 
various forms of the correlation  function C(x - x’). On  the 
basis of these last results we were able to assign errors  to  the 
results of the theories discussed in  the previous sections. 

By studying the influence  of the  shape of C(x - x’) on 
the energy dependence of S($,), one  can  understand  the 
sources  of much of the confusion in  the literature about  the 
origin of Urbach  and exponential tails. It has  often been 
stated that  the exponential region in the density of states  is 
simply a transition region between the Halperin-Lax and  the 
Gaussian regions in which In N( E )  has  a point of inflection 
and  thus looks  linear. This  point of view, while correct in 
essence, is seriously misleading. It does not recognize that 
the Halperin-Lax regime is too narrow to be seen 
experimentally and  that  Gaussian behavior  is established 
only at unobservable deep energies, if at all. Moreover, it 
carries the implication that strict  exponential  behavior can 

Equation (32) appears over and over  again  in the 
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occur only in a narrow energy range about  the  point of 
inflection. In fact, the range of energies over which S[&,] or 
the single-well binding energy I E I varies in such  a way as 
to give an exponential N ( E )  depends strongly on  the  shape 
of C(R)  [remember  that C(0) = I]. The broadest range 
occurs  when C(R) is nearly constant  out  to R = a and  then 
drops rapidly to zero [ 141. A  long tail in C(R)  narrows the 
energy range. In the model  considered by Dow  and Redfield 
[ 171, C(R) - 1/R and N ( E )  lacks both  the Halperin-Lax 
and  the  Urbach regions. On  the basis of the Halperin-Lax 
result for random-screened Coulomb potentials, 
corresponding to C(R) - and a rather narrow Urbach 
range, the essential identity  of the related  family of theories 
(Halperin and Lax, Zittartz,  and Langer, path integral, field 
theory) and  the simple potential-well models has been 
denied [ 191. The Cardy result of a  Halperin-Lax region only 
did  not help in this regard. 

One  can  conclude  that short-range order  in  the  random 
potential favors Urbach tails, that  one  can get all of the 
physics and  accurate  quantitative results out of  simple 
potential-well models, but  that  one needs the field theory to 
establish the accuracy of the simple potential-well models 
and give approximate analytic results. It is also important 
that  the field-theoretic methods  make  computations feasible 
in  the tight-binding  representation so that models which 
represent real materials much  more accurately than  the 
simple ones  examined  thus far are feasible to tackle. 

8. Additional  complications:  Polarons and 
excitons 
The electron-phonon interaction has  been taken  into 
account only  in the static  limit in all thz calculations 
described thus far. However, in slow processes, the  dynamic 
effects of the  electron-phonon  interaction  are  important. 
These  include  inelastic  scattering, phonon-induced hopping, 
and polaron formation.  It is already known  that disorder  has 
a strong effect on polaron formation [35], and  that  the effects 
of disorder are strongly affected by the  dynamic aspects of 
the  electron-phonon interaction [35-371. The problem is a 
very difficult one,  as witnessed by the fact that  obtaining  the 
full density of states of, say, the acoustic  polaron in a crystal 
has  only just been  addressed [38, 391. 

Some results on  the influence of lattice dynamics  at zero 
temperature  on  band tailing  have recently been obtained 
[38, 391. In the absence of static  disorder [38] and in the 
presence of strong  electron-acoustic phonon interaction, the 
one-electron DOS projected onto  the  phonon  vacuum 
exhibits  a  linear  exponential band tail which terminates  at 
the small  polaron ground state. This tail arises from 
quantum fluctuations of the lattice ground state, which by 
themselves  provide  potential wells in which the electron may 
localize provided the oscillation frequency  of the electron  in 
the well is fast compared  to  the oscillation frequency of the 
well itself. In particular, there  are  three physically distinct 

energy regions: (1 )  At shallow energies there is a shift of the 
continuum edge associated with the emission and 
reabsorption of virtual phonons. (2) This is followed by a 
linear  exponential tail in which the electron finds and 
stabilizes potential wells described above  arising from 
quantum fluctuations  of the lattice. (3) Finally, at  deep 
energies, the  band tail terminates  at  the polaron ground 
state.  States in  this last energy regime are  truly self-trapped 
states in  that  the electron must create  its own potential well 
rather than simply  finding or stabilizing a pre-existing 
quantum fluctuation. 

sufficiently strong to give rise to appreciable band tailing 
from  polaron formation  alone. In many materials, however, 
the electron-phonon  coupling  is  near  threshold  for  small- 
polaron formation. With the  addition of  a  small amount of 
static  disorder we have  shown  numerically [39] that  there is 
a  substantial synergistic interplay between static  localization 
and polaronic effects. Static  disorder  provides  nucleation 
centers  for  small-polaron formation,  and  the resulting DOS 
in the tail can  be considerably larger than  that arising from 
either effect individually. In all cases there is a broad range 
of linear  exponential  behavior, although  the  actual slope of 
the exponential tail may have  a large component arising 
from  polaron formation.  This is particularly  evident  when 
the  electron-phonon coupling  is just below the small-polaron 
threshold  in the corresponding crystal. 

A  similar  situation exists for excitons. Just as the electron- 
phonon  interaction is always present and always important 
in the problem  of band tails  for slow processes, so the 
Coulomb interaction between a hole in  the valence band  and 
an electron in  the  conduction  band is always present and 
always important in interband optical  absorption. There  are 
some known results for special cases for the exciton 
problem. In  the case of the Frenkel  exciton, where the 
electron and hole propagate as a tightly bound pair with the 
entire  exciton band well separated  from valence or 
conduction bands, the problem of the optical  absorption can 
be reduced to a single-particle problem, and  the results 
reviewed here  for  individual bands  can  be  taken over 
directly. In the case of a generalized Lloyd model, the 
combined density  of  states  for the electron-hole pair can be 
worked out exactly [40] and  the effect of  disorder on  the 
interplay between exciton  absorption and  interband 
absorption  understood. In general, however, the effects of the 
Coulomb interaction are  not understood. 

In most real materials the electron-phonon  coupling is not 

9. Conclusions 
We now  have an accurate,  simple physical picture  of the 
nature  and origin of a large and  common class of band tails. 
This physical picture  is  backed up by a powerful and varied 
set of formal  arguments which pull  together the  entire 
25-year development of the theory.  Any system amenable  to 
a  tight-binding  representation  of its electronic structure  and 
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possessing a reference  system  with normal band edges  [41] 
can be studied quantitatively via the instanton theory. 
Nevertheless, much remains to be done. The pre-exponential 
factor N , ( E )  needs to be calculated via the instanton theory 
for correlated random potentials. Explicit instanton 
calculations need to be done for tight-binding models. The 
field theory as it is currently developed requires different 
computational techniques for the tail and the  continuum. A 
field-theoretic variational principle valid  in the presence  of 
complex  fields and suitable for both continuum and tail  is 
needed and has long been  lacking. The interplay between the 
dynamic aspects of the electron-phonon interaction and 
disorder must be addressed  for  slow  processes, as discussed 
in  Section 8. The interplay between the electron-hole 
interaction and disorder must be addressed  for  fast interband 
processes,  as  is also discussed  in  Section 8. 
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